2 research outputs found

    Optimisation of Tamper Localisation and Recovery Watermarking Techniques

    Get PDF
    Digital watermarking has found many applications in many fields, such as: copyright tracking, media authentication, tamper localisation and recovery, hardware control, and data hiding. The idea of digital watermarking is to embed arbitrary data inside a multimedia cover without affecting the perceptibility of the multimedia cover itself. The main advantage of using digital watermarking over other techniques, such as signature based techniques, is that the watermark is embedded into the multimedia cover itself and will not be removed even with the format change. Image watermarking techniques are categorised according to their robustness against modification into: fragile, semi-fragile, and robust watermarking. In fragile watermarking any change to the image will affect the watermark, this makes fragile watermarking very useful in image authentication applications, as in medical and forensic fields, where any tampering of the image is: detected, localised, and possibly recovered. Fragile watermarking techniques are also characterised by a higher capacity when compared to semi-fragile and robust watermarking. Semifragile watermarking techniques resist some modifications, such as lossy compression and low pass filtering. Semi-fragile watermarking can be used in authentication and copyright validation applications whenever the amount of embedded information is small and the expected modifications are not severe. Robust watermarking techniques are supposed to withstand more severe modifications, such as rotation and geometrical bending. Robust watermarking is used in copyright validation applications, where copyright information in the image must remains accessible even after severe modification. This research focuses on the application of image watermarking in tamper localisation and recovery and it aims to provide optimisation for some of its aspects. The optimisation aims to produce watermarking techniques that enhance one or more of the following aspects: consuming less payload, having better recovery quality, recovering larger tampered area, requiring less calculations, and being robust against the different counterfeiting attacks. Through the survey of the main existing techniques, it was found that most of them are using two separate sets of data for the localisation and the recovery of the tampered area, which is considered as a redundancy. The main focus in this research is to investigate employing image filtering techniques in order to use only one set of data for both purposes, leading to a reduced redundancy in the watermark embedding and enhanced capacity. Four tamper localisation and recovery techniques were proposed, three of them use one set of data for localisation and recovery while the fourth one is designed to be optimised and gives a better performance even though it uses separate sets of data for localisation and recovery. The four techniques were analysed and compared to two recent techniques in the literature. The performance of the proposed techniques vary from one technique to another. The fourth technique shows the best results regarding recovery quality and Probability of False Acceptance (PFA) when compared to the other proposed techniques and the two techniques in the literature, also, all proposed techniques show better recovery quality when compared to the two techniques in the literature
    corecore